On universal algebra over nominal sets

نویسندگان

  • Alexander Kurz
  • Daniela Petrisan
چکیده

Nominal sets were introduced by Gabbay and Pitts (Gabbay and Pitts, 1999). This paper describes a step towards universal algebra over nominal sets. There has been some work in this direction, most notably by M.J. Gabbay (Gabbay, 2008). The originality of our approach is that we do not start from the analogy between sets and nominal sets. As shown in (Gabbay, 2008), this is possible, but it requires ingenuity and ad hoc constructions. For example, the logic of (Gabbay, 2008) is not standard equational logic and even fundamental notions such as variables and free algebras have to be revisited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy universal algebras on $L$-sets

This paper attempts to generalize universal algebras on classical sets to $L$-sets when $L$ is a GL-quantale. Some basic notions of fuzzy universal algebra on an $L$-set are introduced, such as subalgebra, quotient algebra, homomorphism, congruence, and direct product etc. The properties of them are studied. $L$-valued power algebra is also introduced and it is shown there is an onto homomorphi...

متن کامل

Algebraic Theories over Nominal Sets

We investigate the foundations of a theory of algebraic data types with variable binding inside classical universal algebra. In the first part, a category-theoretic study of monads over the nominal sets of Gabbay and Pitts leads us to introduce new notions of finitary based monads and uniform monads. In a second part we spell out these notions in the language of universal algebra, show how to r...

متن کامل

Nominal Algebra and the HSP Theorem

Nominal algebra is a logic of equality developed to reason algebraically in the presence of binding. In previous work it has been shown how nominal algebra can be used to specify and reason algebraically about systems with binding, such as first-order logic, the lambda-calculus, or process calculi. Nominal algebra has a semantics in nominal sets (sets with a finitely-supported permutation actio...

متن کامل

Stone duality for first-order logic: a nominal approach to logic and topology

What are variables, and what is universal quantification over a variable? Nominal sets are a notion of ‘sets with names’, and using equational axioms in nominal algebra these names can be given substitution and quantification actions. So we can axiomatise first-order logic as a nominal logical theory. We can then seek a nominal sets representation theorem in which predicates are interpreted as ...

متن کامل

Fuzzy Acts over Fuzzy Semigroups and Sheaves

lthough fuzzy set theory and  sheaf theory have been developed and studied independently,  Ulrich Hohle shows that a large part of fuzzy set  theory  is in fact a subfield of sheaf theory. Many authors have studied mathematical structures, in particular, algebraic structures, in both  categories of these generalized (multi)sets. Using Hohle's idea, we show that for a (universal) algebra $A$, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical Structures in Computer Science

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010