On universal algebra over nominal sets
نویسندگان
چکیده
Nominal sets were introduced by Gabbay and Pitts (Gabbay and Pitts, 1999). This paper describes a step towards universal algebra over nominal sets. There has been some work in this direction, most notably by M.J. Gabbay (Gabbay, 2008). The originality of our approach is that we do not start from the analogy between sets and nominal sets. As shown in (Gabbay, 2008), this is possible, but it requires ingenuity and ad hoc constructions. For example, the logic of (Gabbay, 2008) is not standard equational logic and even fundamental notions such as variables and free algebras have to be revisited.
منابع مشابه
Fuzzy universal algebras on $L$-sets
This paper attempts to generalize universal algebras on classical sets to $L$-sets when $L$ is a GL-quantale. Some basic notions of fuzzy universal algebra on an $L$-set are introduced, such as subalgebra, quotient algebra, homomorphism, congruence, and direct product etc. The properties of them are studied. $L$-valued power algebra is also introduced and it is shown there is an onto homomorphi...
متن کاملAlgebraic Theories over Nominal Sets
We investigate the foundations of a theory of algebraic data types with variable binding inside classical universal algebra. In the first part, a category-theoretic study of monads over the nominal sets of Gabbay and Pitts leads us to introduce new notions of finitary based monads and uniform monads. In a second part we spell out these notions in the language of universal algebra, show how to r...
متن کاملNominal Algebra and the HSP Theorem
Nominal algebra is a logic of equality developed to reason algebraically in the presence of binding. In previous work it has been shown how nominal algebra can be used to specify and reason algebraically about systems with binding, such as first-order logic, the lambda-calculus, or process calculi. Nominal algebra has a semantics in nominal sets (sets with a finitely-supported permutation actio...
متن کاملStone duality for first-order logic: a nominal approach to logic and topology
What are variables, and what is universal quantification over a variable? Nominal sets are a notion of ‘sets with names’, and using equational axioms in nominal algebra these names can be given substitution and quantification actions. So we can axiomatise first-order logic as a nominal logical theory. We can then seek a nominal sets representation theorem in which predicates are interpreted as ...
متن کاملFuzzy Acts over Fuzzy Semigroups and Sheaves
lthough fuzzy set theory and sheaf theory have been developed and studied independently, Ulrich Hohle shows that a large part of fuzzy set theory is in fact a subfield of sheaf theory. Many authors have studied mathematical structures, in particular, algebraic structures, in both categories of these generalized (multi)sets. Using Hohle's idea, we show that for a (universal) algebra $A$, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical Structures in Computer Science
دوره 20 شماره
صفحات -
تاریخ انتشار 2010